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Abstract. W e  study the winding angle 0 of planar Levy Rights around a given point, say 
the origin 0. In panicular, we calculate the variance (8’) and show that, after a long time 
t, it is praponional to In t (for Brownian random walks (8‘)ac(ln 1)‘). In the same 
conditions, we show that the variable x = tl/JTh? is approximately distributed according 
to a Gaussian law. Finally, we compare our results with computer simulations. 

Over several decades, the study of winding properties of Brownian curves has aroused 
great interest among mathematicians [ 1-41 and physicists [ M I .  Consider for instance 
a planar Brownian motion starting at some point different from the origin 0 and call 
O ( t )  the angle wound around 0 at time 1. T h e  asymptotic probability distribution of 
O(I) ,  when, f +a, was first calculated by Spitzer [2] who obtained a Cauchy law: 

( i j  

Of course, for discrete random walks, (8’) remains finite [3] ( ( 0 ’ ) ~  (In f)2, I being 
the number of steps). Since that time, many other important laws have been discovered. 
For instance, Pitman and Yor [4] calculated the joint law for the windings around n 
prescribed points. 

More recently, Duplantier and Saleur [8] studied self-avoiding random walks (SAW), 

obtaining (when f + 00) the following Gaussian distribution: 

However, the situation appears less clear if we consider winding properties of more 
genera! Levy Rights [IO!: The purpose of this !etter is the study of some of them 
essentially through the calculation of the variance (e2) (in the limit r+m). 

ity for a particle starting at r, ( 1  = 0) to reach r at time f reads [IO]: 
We begin with the definition of two-dimensional isotropic Levy flights. Theprobabil- 

where lkl=(k:+k:j”’and O < p s 2 .  
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In fact, due to isotropy, it only depends on the end-to-end distance lr-rol that 
scales like f’ lp. Distribution (3) is stable and indefinitely divisible. It satisfies the 
Chapman-Kolmogorov equation: 

P(r ;  I ) =  d2r‘.P(r-r’; f-T)P(r’; T) O s T S f .  (4) I 
Notice that P ( r ;  1) can he evaluated in a closed form only in a few special cases: 
(i) p = 2 (Brownian random walks) 

satisfying the diffusion equation A P  = aP/Jf. 
(ii) p = 1 (Cauchy flights) 

P( r ;  f )  =- 
2 a  

1 
2 a  ( 1 ~ + 1 ~ ) ’ ’ ~  

d k  ! d o ( ~ k ~ ~ ~ r ~ )  e d k l  

f 

I: 
(6) -_ - 

with A P  = -d2P/a f2 .  

development [IO] ( q  = I F F ) :  
More generally, for 0 < p < 2 and r + m, we can obtain the following asymptotic 

1 
r p ( r ;  f ) = ~ [ C , ~ + D , ~ 2 + + o ( ~ 3 ) l  

Equations (7) show that, for 01 > p, the moments (Im) are infinite: we are in the presence 
of broad distributions. They do  not satisfy diffusion type equations. However, using 
(4) and (7) ,  we can construct an  integro-differential equation involving aP(r;  f ) /J f  

Now, we consider the winding angle 0 around 0 and calculate the variance (0’) in a 
discretized version, each time step being equal to AI. The notation will go as follows. 
The particle starts at ro (ro, O(0) =0) and arrives, at time f, at point r ( r ,  0 ( f ) )  after a 
series of (t/At) flights. (In the limit f +a, we can take ro-O.) Between f and (f+At) ,  
it flies along a straight line from r to r‘ (r‘, O(f)+AO(f)). In those conditions, ((AO(f))’) 
reads: 

((AO(t))’)=(Za) (+“d(AB) -,, IOmdr jomdr’(A0)2rr’9(r; f )9( r ’ - r ;  Af) (9) 
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Considering first the case p = 2, the calculation leads to: 

where 

r being large (At fixed), we get: 

Equation (10) implies: 

when f + m, a result already obtained by Berger [3]. 
So, the scaling variable Xcc B/ln r appears when p = 2, the variance (e’) remaining 

obviously finite as long as we work with the discretized version. However, when we 
go to the diffusion approximation (continuous version, A t +  0), we see (equation (13)). 
that (8’) becomes infinite, a property first deduced by Levy [l]. 

Now, before turning to the general case p < 2, we look at p = 1 (Cauchy flights) 
where explicit calculation can be done. After some algebra, (6) and (9) lead to: 

p=1-sin2ucosqp. 

Taking the limit r+w: 

Finally, we get (for A t  finite): 

a , = m = 1 . 6 6 5 .  

Now, the scaling variable should be X = e/*. This is supported by computer 
simulations. We studied winding angle distributions for Cauchy flights of t = 200, 400, 
800, 1600 steps. (Ar = 1; 10000 events for each r value.) In particular, we obtained 
( ( e ( t ) ) 2 ) ” 2 = a f i  with 1.66<0<1.68, a value close to a, (16). 
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In addition, we notice, (16), that the variance (8') becomes infinite in the continuous 

The probability distribution P( 0)  can be approximately determined by assuming: 
version (Af+O). 

( ( e ( t ) ) v e ( t ) ) " ) =  ( ( e ( t ) ) w a e ( m .  (17) 
Keeping only leading-order terms, we get: 

Straightforward algebra leads to: 
(eiAe)= t-a:~12/2 

and 

(19) 

In figure 1, a comparison is done between (19), (full curve), and computer simula- 
tions (closed circles: f = 200, squares: f = 1600; 10 000 events for each I value). An 
interesting agreement shows that (19) is really a good approximation. (In particular, 
the neglect of correlations (17), does not seem to be very important.) 

In the general case ( p < 2 ) ,  scaling properties of (3) allow us to write (9) as: 

((Af3(1))~)=(27r) ('=d(A8) -I/ Iomdr  (omdr'(AO)2rr'9'(r; I)!? 

(20) 
p ( r ;  1) 

= (2n)C,($!) j-y d(AB) Iom d r  lom dr'(Afl)2rr' 1 r ' - r p  

in the limit f + c o  (we used (7)). 
Finally, we get the results: 

((Ae(f))2)-(y) a: (21) 
((e( f))2)1/2 - a*&? 

4 
0.3 -- 

P I X ]  

0.1 -. 

. b 
0 2 4 

x 

Figure 1. Computer simulations of Cauchy flights (e  = 1). The winding angle distribution 
P ( X )  is platted as a function of the scaling variable X = OIJiiiI. (P(X) = P(-X).) I i s  
the number of steps (closed circles: I =200; squares: t = 1600). ' Ihe full curve represents 
the Gaussian, equation (19). 
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where 

a,, = 

cp2(sin U)*-' cos U 
( l - s i n 2 u c o ~ c p ) ~ + ' / ~ '  

I,. = 1,  d q  d u  

(I,. is finite when O<p<2. I, = 4 ~  In 2). and for the winding angle distribution: 

More generally, the qualitative considerations developed for p = 1 remain valid as 
long as p < 2. We stress that we have not found the analogue of Spitzer's law for Levy 
flights: we have always considered A t  finite. 

Finally, we notice a striking similarity between our result (23) and that of Duplantier 
and Saleur (2) for the Brownian SAW. We think this fact is connected to another 
property shared by Levy flights and SAW: the end-to-end distance scales, for both, like 
1" with CY> 0.5. Thus, the particle is, in average, far from 0 and the winding angle is 
reduced, compared to the free Brownian motion. 
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